HomeNanotechnologySpecies-dependent in vivo mRNA supply and mobile responses to nanoparticles

Species-dependent in vivo mRNA supply and mobile responses to nanoparticles


  • Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS 

    Google Scholar
     

  • Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for main hyperoxaluria kind 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    CAS 

    Google Scholar
     

  • Balwani, M. et al. Part 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).

    CAS 

    Google Scholar
     

  • Ray, Okay. Okay. et al. Two section 3 trials of inclisiran in sufferers with elevated LDL ldl cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    CAS 

    Google Scholar
     

  • Finkel, R. S. et al. Nusinersen versus sham management in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    CAS 

    Google Scholar
     

  • Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2020).


    Google Scholar
     

  • Polack, F. P. et al. Security and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    CAS 

    Google Scholar
     

  • Sahin, U. et al. Personalised RNA mutanome vaccines mobilize poly-specific therapeutic immunity in opposition to most cancers. Nature 547, 222–226 (2017).

    CAS 

    Google Scholar
     

  • Nair, J. Okay. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits strong RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    CAS 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the medical translation of nanomedicines containing nucleic acid-based medication. Nat. Nanotechnol. 14, 1084–1087 (2019).

    CAS 

    Google Scholar
     

  • Akinc, A. et al. Focused supply of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    CAS 

    Google Scholar
     

  • Willoughby, J. L. S. et al. Analysis of GalNAc-siRNA conjugate exercise in pre-clinical animal fashions with decreased asialoglycoprotein receptor expression. Mol. Ther. 26, 105–114 (2018).

    CAS 

    Google Scholar
     

  • Lisowski, L. et al. Choice and analysis of clinically related AAV variants in a xenograft liver mannequin. Nature 506, 382–386 (2014).

    CAS 

    Google Scholar
     

  • Paulk, N. Okay. et al. Bioengineered AAV capsids with mixed excessive human liver transduction in vivo and distinctive humoral seroreactivity. Mol. Ther. 26, 289–303 (2018).

    CAS 

    Google Scholar
     

  • Vercauteren, Okay. et al. Superior in vivo transduction of human hepatocytes utilizing engineered AAV3 capsid. Mol. Ther. 24, 1042–1049 (2016).

    CAS 

    Google Scholar
     

  • Pei, X. et al. Growth of AAV variants with human hepatocyte tropism and neutralizing antibody escape capability. Mol. Ther. Strategies Clin. Dev. 18, 259–268 (2020).

    CAS 

    Google Scholar
     

  • Wilson, E. M. et al. Intensive double humanization of each liver and hematopoiesis in FRGN mice. Stem Cell Res. 13, 404–412 (2014).

    CAS 

    Google Scholar
     

  • Foquet, L. et al. Profitable engraftment of human hepatocytes in uPA-SCID and FRG® KO mice. Strategies Mol. Biol. 1506, 117–130 (2017).

    CAS 

    Google Scholar
     

  • Chen, D. et al. Fast discovery of potent siRNA-containing lipid nanoparticles enabled by managed microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    CAS 

    Google Scholar
     

  • Sago, C .D. et al. Modifying a generally expressed endocytic receptor retargets nanoparticles in vivo. Nano Lett. 18, 7590–7600 (2018).

    CAS 

    Google Scholar
     

  • Sago, C. D. et al. Nanoparticles that ship RNA to bone marrow recognized by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    CAS 

    Google Scholar
     

  • Sago, C. D. et al. Excessive-throughput in vivo display screen of purposeful mRNA supply identifies nanoparticles for endothelial cell gene enhancing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    CAS 

    Google Scholar
     

  • Tiwari, P. M. et al. Engineered mRNA-expressed antibodies stop respiratory syncytial virus an infection. Nat. Commun. 9, 3999 (2018).


    Google Scholar
     

  • Paunovska, Okay. et al. Nanoparticles containing oxidized ldl cholesterol ship mRNA to the liver microenvironment at clinically related doses. Adv. Mater. 31, e1807748 (2019).


    Google Scholar
     

  • Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA supply in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    CAS 

    Google Scholar
     

  • Dahlman, J. E. et al. In vivo endothelial siRNA supply utilizing polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    CAS 

    Google Scholar
     

  • Lokugamage, M. P. et al. Delicate innate immune activation overrides environment friendly nanoparticle-mediated RNA supply. Adv. Mater. 32, 1904905 (2020).

    CAS 

    Google Scholar
     

  • Paunovska, Okay. et al. Analyzing 2000 in vivo drug supply information factors reveals ldl cholesterol construction impacts nanoparticle supply. ACS Nano 12, 8341–8349 (2018).

    CAS 

    Google Scholar
     

  • Patel, S. et al. Naturally-occurring ldl cholesterol analogues in lipid nanoparticles induce polymorphic form and improve intracellular supply of mRNA. Nat. Commun. 11, 983 (2020).

    CAS 

    Google Scholar
     

  • Mui, B. L. et al. Affect of polyethylene glycol lipid desorption charges on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).

    CAS 

    Google Scholar
     

  • Kaczmarek, J. C. et al. Optimization of a degradable polymer-lipid nanoparticle for potent systemic supply of mRNA to the lung endothelium and immune cells. Nano Lett. 18, 6449–6454 (2018).

    CAS 

    Google Scholar
     

  • Kranz, L. M. et al. Systemic RNA supply to dendritic cells exploits antiviral defence for most cancers immunotherapy. Nature 534, 396–401 (2016).


    Google Scholar
     

  • Cheng, Q. et al. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS 

    Google Scholar
     

  • Lokugamage, M. P., Sago, C. D. & Dahlman, J. E. Testing 1000’s of nanoparticles in vivo utilizing DNA barcodes. Curr. Opin. Biomed. Eng. 7, 1–8 (2018).


    Google Scholar
     

  • Patel, S. et al. Boosting intracellular supply of lipid nanoparticle-encapsulated mRNA. Nano Lett. 17, 5711–5718 (2017).

    CAS 

    Google Scholar
     

  • Picelli, S. et al. Full-length RNA-seq from single cells utilizing Sensible-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS 

    Google Scholar
     

  • Ge, S. X., Son, E. W. & Yao, R. iDEP: an built-in internet utility for differential expression and pathway evaluation of RNA-Seq information. BMC Bioinformatics 19, 534 (2018).

    CAS 

    Google Scholar
     

  • Low, J. Z. B., Khang, T. F. & Tammi, M. T. CORNAS: coverage-dependent RNA-Seq evaluation of gene expression information with out organic replicates. BMC Bioinformatics 18, 575 (2017).


    Google Scholar
     

  • Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of enormous gene lists utilizing DAVID bioinformatics assets. Nat. Protoc. 4, 44–57 (2009).

    CAS 

    Google Scholar
     

  • Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein–protein affiliation networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).

    CAS 

    Google Scholar
     

  • Dobrovolskaia, M. A., Shurin, M. & Shvedova, A. A. Present understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 299, 78–89 (2016).

    CAS 

    Google Scholar
     

  • Azuma, H. et al. Strong growth of human hepatocytes in Fah–/–/Rag2–/–/Il2rg–/– mice. Nat. Biotechnol. 25, 903–910 (2007).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments