Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).
Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for main hyperoxaluria kind 1. N. Engl. J. Med. 384, 1216–1226 (2021).
Balwani, M. et al. Part 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).
Ray, Okay. Okay. et al. Two section 3 trials of inclisiran in sufferers with elevated LDL ldl cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).
Finkel, R. S. et al. Nusinersen versus sham management in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).
Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2020).
Polack, F. P. et al. Security and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
Sahin, U. et al. Personalised RNA mutanome vaccines mobilize poly-specific therapeutic immunity in opposition to most cancers. Nature 547, 222–226 (2017).
Nair, J. Okay. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits strong RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).
Akinc, A. et al. The Onpattro story and the medical translation of nanomedicines containing nucleic acid-based medication. Nat. Nanotechnol. 14, 1084–1087 (2019).
Akinc, A. et al. Focused supply of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).
Willoughby, J. L. S. et al. Analysis of GalNAc-siRNA conjugate exercise in pre-clinical animal fashions with decreased asialoglycoprotein receptor expression. Mol. Ther. 26, 105–114 (2018).
Lisowski, L. et al. Choice and analysis of clinically related AAV variants in a xenograft liver mannequin. Nature 506, 382–386 (2014).
Paulk, N. Okay. et al. Bioengineered AAV capsids with mixed excessive human liver transduction in vivo and distinctive humoral seroreactivity. Mol. Ther. 26, 289–303 (2018).
Vercauteren, Okay. et al. Superior in vivo transduction of human hepatocytes utilizing engineered AAV3 capsid. Mol. Ther. 24, 1042–1049 (2016).
Pei, X. et al. Growth of AAV variants with human hepatocyte tropism and neutralizing antibody escape capability. Mol. Ther. Strategies Clin. Dev. 18, 259–268 (2020).
Wilson, E. M. et al. Intensive double humanization of each liver and hematopoiesis in FRGN mice. Stem Cell Res. 13, 404–412 (2014).
Foquet, L. et al. Profitable engraftment of human hepatocytes in uPA-SCID and FRG® KO mice. Strategies Mol. Biol. 1506, 117–130 (2017).
Chen, D. et al. Fast discovery of potent siRNA-containing lipid nanoparticles enabled by managed microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).
Sago, C .D. et al. Modifying a generally expressed endocytic receptor retargets nanoparticles in vivo. Nano Lett. 18, 7590–7600 (2018).
Sago, C. D. et al. Nanoparticles that ship RNA to bone marrow recognized by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).
Sago, C. D. et al. Excessive-throughput in vivo display screen of purposeful mRNA supply identifies nanoparticles for endothelial cell gene enhancing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).
Tiwari, P. M. et al. Engineered mRNA-expressed antibodies stop respiratory syncytial virus an infection. Nat. Commun. 9, 3999 (2018).
Paunovska, Okay. et al. Nanoparticles containing oxidized ldl cholesterol ship mRNA to the liver microenvironment at clinically related doses. Adv. Mater. 31, e1807748 (2019).
Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA supply in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).
Dahlman, J. E. et al. In vivo endothelial siRNA supply utilizing polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).
Lokugamage, M. P. et al. Delicate innate immune activation overrides environment friendly nanoparticle-mediated RNA supply. Adv. Mater. 32, 1904905 (2020).
Paunovska, Okay. et al. Analyzing 2000 in vivo drug supply information factors reveals ldl cholesterol construction impacts nanoparticle supply. ACS Nano 12, 8341–8349 (2018).
Patel, S. et al. Naturally-occurring ldl cholesterol analogues in lipid nanoparticles induce polymorphic form and improve intracellular supply of mRNA. Nat. Commun. 11, 983 (2020).
Mui, B. L. et al. Affect of polyethylene glycol lipid desorption charges on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).
Kaczmarek, J. C. et al. Optimization of a degradable polymer-lipid nanoparticle for potent systemic supply of mRNA to the lung endothelium and immune cells. Nano Lett. 18, 6449–6454 (2018).
Kranz, L. M. et al. Systemic RNA supply to dendritic cells exploits antiviral defence for most cancers immunotherapy. Nature 534, 396–401 (2016).
Cheng, Q. et al. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).
Lokugamage, M. P., Sago, C. D. & Dahlman, J. E. Testing 1000’s of nanoparticles in vivo utilizing DNA barcodes. Curr. Opin. Biomed. Eng. 7, 1–8 (2018).
Patel, S. et al. Boosting intracellular supply of lipid nanoparticle-encapsulated mRNA. Nano Lett. 17, 5711–5718 (2017).
Picelli, S. et al. Full-length RNA-seq from single cells utilizing Sensible-seq2. Nat. Protoc. 9, 171–181 (2014).
Ge, S. X., Son, E. W. & Yao, R. iDEP: an built-in internet utility for differential expression and pathway evaluation of RNA-Seq information. BMC Bioinformatics 19, 534 (2018).
Low, J. Z. B., Khang, T. F. & Tammi, M. T. CORNAS: coverage-dependent RNA-Seq evaluation of gene expression information with out organic replicates. BMC Bioinformatics 18, 575 (2017).
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of enormous gene lists utilizing DAVID bioinformatics assets. Nat. Protoc. 4, 44–57 (2009).
Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein–protein affiliation networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).
Dobrovolskaia, M. A., Shurin, M. & Shvedova, A. A. Present understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 299, 78–89 (2016).
Azuma, H. et al. Strong growth of human hepatocytes in Fah–/–/Rag2–/–/Il2rg–/– mice. Nat. Biotechnol. 25, 903–910 (2007).