Geim, A. Ok. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Track, J. C. W. & Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13, 986–993 (2018).
Kim, Ok. et al. van der Waals heterostructures with excessive accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Balents, L., Dean, C. R., Efetov, D. Ok. & Younger, A. F. Superconductivity and robust correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration earlier than and past two-dimensional supplies. Nature 567, 323–333 (2019).
Akinwande, D. et al. Graphene and two-dimensional supplies for silicon expertise. Nature 573, 507–518 (2019).
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
Sharpe, A. L. et al. Emergent ferromagnetism close to three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition steel dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
Tran, Ok. et al. Proof for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
Wang, L. et al. Correlated digital phases in twisted bilayer transition steel dichalcogenides. Nat. Mater. 19, 861–866 (2020).
Park, J. M., Cao, Y., Watanabe, Ok., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).
Banszerus, L. et al. Ultrahigh-mobility graphene gadgets from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).
Kang, Ok. et al. Excessive-mobility three-atom-thick semiconducting movies with wafer-scale homogeneity. Nature 520, 656–660 (2015).
Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal movies of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).
Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).
Masubuchi, S. et al. Autonomous robotic looking and meeting of two-dimensional crystals to construct van der Waals superlattices. Nat. Commun. 9, 1413 (2018).
Pizzocchero, F. et al. The recent pick-up method for batch meeting of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).
Fritz, N., Dao, H., Allen, S. A. B. & Kohl, P. A. Polycarbonates as short-term adhesives. Int. J. Adhes. Adhes. 38, 45–49 (2012).
Castellanos-Gomez, A. et al. Deterministic switch of two-dimensional supplies by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals steel–semiconductor junctions. Nature 557, 696–700 (2018).
Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).
Lin, Y.-C. et al. Graphene annealing: how clear can it’s? Nano Lett. 12, 414–419 (2012).
Nagpal, P., Lindquist, N. C., Oh, S.-H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009).
Hsu, C. et al. Thickness‐dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv. Choose. Mater. 7, 1900239 (2019).
Morozov, Y. V. & Kuno, M. Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2. Appl. Phys. Lett. 107, 083103 (2015).
Track, B. et al. Complicated optical conductivity of two-dimensional MoS2: a placing layer dependency. J. Phys. Chem. Lett. 10, 6246–6252 (2019).
Ji, H. G., Solís-Fernández, P., Erkılıç, U. & In the past, H. Stacking orientation-dependent photoluminescence pathways in artificially stacked bilayer WS2 nanosheets grown by chemical vapor deposition: implications for spintronics and valleytronics. ACS Appl. Nano Mater. 4, 3717–3724 (2021).
Niu, Y. et al. Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2and WSe2. Nanomaterials 8, 725 (2018).
Havener, R. W. et al. Hyperspectral imaging of construction and composition in atomically skinny heterostructures. Nano Lett. 13, 3942–3946 (2013).
Huang, S. et al. Probing the interlayer coupling of twisted bilayer MoS2 utilizing photoluminescence spectroscopy. Nano Lett. 14, 5500–5508 (2014).
Liu, Ok. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).
Mak, Ok. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically skinny MoS2: a brand new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Raja, A. et al. Dielectric dysfunction in two-dimensional supplies. Nat. Nanotechnol. 14, 832–837 (2019).
Chubarov, M. et al. Wafer-scale epitaxial progress of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).
Liao, M. et al. Exact management of the interlayer twist angle in massive scale MoS2 homostructures. Nat. Commun. 11, 2153 (2020).
Yoo, H. et al. Atomic and digital reconstruction on the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).
Weston, A. et al. Atomic reconstruction in twisted bilayers of transition steel dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).
Quan, J. Phonon renormalization in reconstructed MoS2 moiré‚ superlattices. Nat. Mater. 20, 1100–1105 (2021).
Kim, C.-J. et al. Chiral atomically skinny movies. Nat. Nanotechnol. 11, 520–524 (2016).
Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).
Yao, Ok. et al. Enhanced tunable second harmonic era from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).
Lu, D. et al. Synthesis of freestanding single-crystal perovskite movies and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
Cueva, P., Hovden, R., Mundy, J. A., Xin, H. L. & Muller, D. A. Knowledge processing for atomic decision electron vitality loss spectroscopy. Microsc. Microanal. 18, 667–675 (2012).
Zhang, H. et al. Measuring the refractive index of extremely crystalline monolayer MoS2 with excessive confidence. Sci. Rep. 5, 8440 (2015).
Liu, H.-L. et al. Temperature-dependent optical constants of monolayer MoS2, MoSe2, WS2, and WSe2: spectroscopic ellipsometry and first-principles calculations. Sci. Rep. 10, 15282 (2020).
Morozov, Y. V. & Kuno, M. Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2. Appl. Phys. Lett. 107, 083103 (2015).
Jung, G.-H., Yoo, S. & Park, Q.-H. Measuring the optical permittivity of two-dimensional supplies with no priori data of digital transitions. Nanophotonics 8, 263–270 (2018).