HomeNanotechnologyNon-oxidized naked copper nanoparticles with floor extra electrons in air

Non-oxidized naked copper nanoparticles with floor extra electrons in air


  • Chase, M. W. Jr NIST-JANAF Thermochemical Tables 4th edn (Nationwide Institute of Requirements and Know-how, 1998).

  • Perelaer, J. et al. Printed electronics: the challenges concerned in printing units, interconnects, and contacts based mostly on inorganic supplies. J. Mater. Chem. 20, 8446–8453 (2010).

    CAS 

    Google Scholar
     

  • Laibinis, P. E. & Whitesides, G. M. Self-assembled monolayers of n-alkanethiolates on copper are barrier movies that defend the metallic towards oxidation by air. J. Am. Chem. Soc. 114, 9022–9028 (1992).

    CAS 

    Google Scholar
     

  • Chen, S. W. & Sommers, J. M. Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution. J. Phys. Chem. B 105, 8816–8820 (2001).

    CAS 

    Google Scholar
     

  • Dabera, G. D. M. R. et al. Retarding oxidation of copper nanoparticles with out electrical isolation and the dimensions dependence of labor perform. Nat. Commun. 8, 1894 (2017).


    Google Scholar
     

  • Gained, Y. et al. Annealing-free fabrication of extremely oxidation-resistive copper nanowire composite conductors for photovoltaics. npj Asia Mater. 6, e105 (2014).

    CAS 

    Google Scholar
     

  • Jeong, S. et al. Secure aqueous based mostly Cu nanoparticle ink for printing well-defined extremely conductive options on a plastic substrate. Langmuir 27, 3144–3149 (2011).

    CAS 

    Google Scholar
     

  • Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    CAS 

    Google Scholar
     

  • Ajmal, C. M. et al. In-situ lowered non-oxidized copper nanoparticles in nanocomposites with extraordinary excessive electrical and thermal conductivity. Mater. Immediately 48, 59–71 (2021).


    Google Scholar
     

  • Cabrera, N. & Mott, N. F. Principle of the oxidation of metals. Rep. Prog. Phys. 12, 163–184 (1949).

    CAS 

    Google Scholar
     

  • Davy, H. VI. On the corrosion of copper sheeting by sea water, and on strategies of stopping this impact; and on their software to ships of warfare and different ships. Phil. Trans. R. Soc. 114, 151–158 (1824).


    Google Scholar
     

  • Von Baeckmann, W., Schwenk, W. & Prinz, W. Handbook of Cathodic Corrosion Safety (Gulf Skilled Publishing, 1997).

  • Dye, J. L. Electrides: ionic salts with electrons because the anions. Science 247, 663–668 (1990).


    Google Scholar
     

  • Matsuishi, S. et al. Excessive-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e). Science 301, 626–629 (2003).


    Google Scholar
     

  • Lee, Ok., Kim, S. W., Toda, Y., Matsuishi, S. & Hosono, H. Dicalcium nitride as a two-dimensional electride with an anionic electron layer. Nature 494, 336–340 (2013).

    CAS 

    Google Scholar
     

  • Dye, J. L. Electrides: early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009).

    CAS 

    Google Scholar
     

  • Kitano, M. et al. Ammonia synthesis utilizing a steady electride as an electron donor and reversible hydrogen retailer. Nat. Chem. 4, 934–940 (2012).

    CAS 

    Google Scholar
     

  • Menamparambath, M. M. et al. Giant work perform distinction pushed electron switch from electrides to single-walled carbon nanotubes. Nanoscale 6, 8844–8851 (2014).

    CAS 

    Google Scholar
     

  • Inoshita, T., Jeong, S., Hamada, N. & Hosono, H. Exploration for two-dimensional electrides by way of database screening and ab initio calculation. Phys. Rev. X 4, 031023 (2014).

    CAS 

    Google Scholar
     

  • Lee, S. Y. et al. Ferromagnetic quasi-atomic electrons in two-dimensional electride. Nat. Commun. 11, 1526 (2020).

    CAS 

    Google Scholar
     

  • Lowell, J. Contact electrification of metals. J. Phys. D 8, 53–63 (1975).

    CAS 

    Google Scholar
     

  • Horn, R. G. & Smith, D. T. Contact electrification and adhesion between dissimilar supplies. Science 256, 362–364 (1992).


    Google Scholar
     

  • Peljo, P., Manzanares, J. A. & Girault, H. H. Contact potentials, Fermi degree equilibration, and floor charging. Langmuir 32, 5765–5775 (2016).

    CAS 

    Google Scholar
     

  • Wang, Z. L., Chen, J. & Lin, L. Progress in triboelectric nanogenerators as a brand new vitality expertise and self-powered sensors. Vitality Environ. Sci. 8, 2250–2282 (2015).

    CAS 

    Google Scholar
     

  • Laffont, L. et al. Excessive decision EELS of Cu–V oxides: software to batteries supplies. Micron 37, 459–464 (2006).

    CAS 

    Google Scholar
     

  • Ewels, P., Sikora, T., Serin, V., Ewels, C. P. & Lajaunie, L. A whole overhaul of the electron energy-loss spectroscopy and X-ray absorption spectroscopy database: eelsdb.eu. Microsc. Microanal. 22, 717–724 (2016).

    CAS 

    Google Scholar
     

  • Gartland, P. O., Berge, S. & Slagsvold, B. J. Photoelectric work perform of a copper single crystal for the (100), (110), (111), and (112) faces. Phys. Rev. Lett. 28, 738–739 (1972).

    CAS 

    Google Scholar
     

  • Griffiths, D. J. Introduction to Electrodynamics (Cambridge Univ. Press, 2017).

  • Ploigt, H.-C., Brun, C., Pivetta, M., Patthey, F. & Schneider, W.-D. Native work perform modifications decided by subject emission resonances: NaCl/Ag(100). Phys. Rev. B 76, 195404 (2007).


    Google Scholar
     

  • Joshi, S. et al. Boron nitride on Cu(111): an electronically corrugated monolayer. Nano Lett. 12, 5821–5828 (2012).

    CAS 

    Google Scholar
     

  • Schulz, F. et al. Epitaxial hexagonal boron nitride on Ir(111): a piece perform template. Phys. Rev. B 89, 235429 (2014).


    Google Scholar
     

  • Medlin, D. L., Campbell, G. H. & Carter, C. B. Stacking defects within the 9R section at an incoherent twin boundary in copper. Acta Mater. 46, 5135–5142 (1998).

    CAS 

    Google Scholar
     

  • Zhou, G. et al. Step-edge-induced oxide development through the oxidation of Cu surfaces. Phys. Rev. Lett. 109, 235502 (2012).


    Google Scholar
     

  • Su, D. S. et al. Floor chemistry of Ag particles: identification of oxide species by aberration-corrected TEM and by DFT calculations. Angew. Chem. Int. Ed. 47, 5005–5008 (2008).

    CAS 

    Google Scholar
     

  • Pauly, N., Tougaard, S. & Yubero, F. LMM Auger main excitation spectra of copper. Surf. Sci. 630, 294–299 (2014).

    CAS 

    Google Scholar
     

  • Antonides, E., Janse, E. C. & Sawatzky, G. A. LMM Auger spectra of Cu, Zn, Ga, and Ge. I. Transition chances, time period splittings, and efficient Coulomb interplay. Phys. Rev. B 15, 1669–1679 (1977).

    CAS 

    Google Scholar
     

  • Speckmann, H. D., Haupt, S. & Strehblow, H.-H. A quantitative floor analytical examine of electrochemically-formed copper oxides by XPS and X-ray-induced Auger spectroscopy. Surf. Interface Anal. 11, 148–155 (1988).

    CAS 

    Google Scholar
     

  • Lahtonen, Ok., Hirsimäki, M., Lampimäki, M. & Valden, M. Oxygen adsorption-induced nanostructures and island formation on Cu{100}: bridging the hole between the formation of floor confined oxygen chemisorption layer and oxide formation. J. Chem. Phys. 129, 124703 (2008).

    CAS 

    Google Scholar
     

  • Quickly, A., Todorova, M., Delley, B. & Stampfl, C. Oxygen adsorption and stability of floor oxides on Cu(111): a first-principles investigation. Phys. Rev. B 73, 165424 (2006).


    Google Scholar
     

  • Wang, Z. X. & Tian, F. H. The adsorption of O atom on Cu (100), (110), and (111) low-index and step defect surfaces. J. Phys. Chem. B 107, 6153–6161 (2003).

    CAS 

    Google Scholar
     

  • Shin, D. H. et al. A self-reducible and alcohol-soluble copper-based metallic–natural decomposition ink for printed electronics. ACS Appl. Mater. Interfaces 6, 3312–3319 (2014).

    CAS 

    Google Scholar
     

  • Kotov, Y. A. Electrical explosion of wires as a technique for preparation of nanopowders. J. Nanopart. Res. 5, 539–550 (2003).


    Google Scholar
     

  • Hansen, W. N. & Hansen, G. J. Customary reference surfaces for work perform measurements in air. Surf. Sci. 481, 172–184 (2001).

    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Particular factors for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).


    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band methodology for locating saddle factors and minimal vitality paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS 

    Google Scholar
     

  • Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and Ok adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).

    CAS 

    Google Scholar
     

  • Makov, G. & Payne, M. Periodic boundary circumstances in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    CAS 

    Google Scholar
     

  • Muhammed Ajmal, C., Faseela, Ok. P., Singh, S. & Baik, S. Hierarchically-structured silver nanoflowers for extremely conductive metallic inks with dramatically lowered filler focus. Sci. Rep. 6, 34894 (2016).


    Google Scholar
     

  • Smits, F. M. Measurement of sheet resistivities with the four-point probe. Bell Syst. Tech. 37, 711–718 (1958).


    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments