HomeNanotechnologyGraphene moiré superlattices with big quantum nonlinearity of chiral Bloch electrons

Graphene moiré superlattices with big quantum nonlinearity of chiral Bloch electrons


  • Novoselov, Ok. S. et al. Electrical area impact in atomically skinny carbon movies. Science 306, 666–669 (2004).

    CAS 

    Google Scholar
     

  • Novoselov, Ok. S. et al. Two-dimensional gasoline of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS 

    Google Scholar
     

  • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental commentary of the quantum Corridor impact and Berry’s section in graphene. Nature 438, 201–204 (2005).

    CAS 

    Google Scholar
     

  • Shen, Y.-R. The Ideas of Nonlinear Optics (Wiley-Interscience, 1984).

  • Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).

    CAS 

    Google Scholar
     

  • Hunt, B. et al. Large Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    CAS 

    Google Scholar
     

  • Yankowitz, M. et al. Emergence of superlattice Dirac factors in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    CAS 

    Google Scholar
     

  • Ma, Q. et al. Remark of the nonlinear Corridor impact beneath time-reversal-symmetric situations. Nature 565, 337–342 (2019).

    CAS 

    Google Scholar
     

  • Kang, Ok., Li, T., Sohn, E., Shan, J. & Mak, Ok. F. Nonlinear anomalous Corridor impact in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    CAS 

    Google Scholar
     

  • Sodemann, I. & Fu, L. Quantum nonlinear Corridor impact induced by Berry curvature dipole in time-reversal invariant supplies. Phys. Rev. Lett. 115, 216806 (2015).


    Google Scholar
     

  • Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Dysfunction-induced nonlinear Corridor impact with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    CAS 

    Google Scholar
     

  • Isobe, H., Xu, S.-Y. & Fu, L. Excessive-frequency rectification through chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    CAS 

    Google Scholar
     

  • He, P. et al. Quantum frequency doubling within the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).

    CAS 

    Google Scholar
     

  • Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum supplies. Nat. Commun. 9, 3740 (2018).


    Google Scholar
     

  • Belinicher, V. I. & Sturman, B. I. The photogalvanic impact in media missing a middle of symmetry. Sov. Phys. Uspekhi 23, 199–223 (1980).


    Google Scholar
     

  • Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    CAS 

    Google Scholar
     

  • Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic second and topological transport. Phys. Rev. Lett. 99, 236809 (2007).


    Google Scholar
     

  • Track, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological Bloch bands in graphene superlattices. Proc. Natl Acad. Sci. USA 112, 10879–10883 (2015).

    CAS 

    Google Scholar
     

  • Stepanov, E. A. et al. Direct commentary of incommensurate–commensurate transition in graphene-hBN heterostructures through optical second harmonic era. ACS Appl. Mater. Interfaces 12, 27758–27764 (2020).

    CAS 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    CAS 

    Google Scholar
     

  • He, P. et al. Nonlinear planar Corridor impact. Phys. Rev. Lett. 123, 016801 (2019).

    CAS 

    Google Scholar
     

  • Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    CAS 

    Google Scholar
     

  • Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Corridor impact in moiré superlattices. Nature 497, 598–602 (2013).

    CAS 

    Google Scholar
     

  • DaSilva, A. M., Jung, J., Adam, S. & MacDonald, A. H. Transport and particle-hole asymmetry in graphene on boron nitride. Phys. Rev. B 91, 245422 (2015).


    Google Scholar
     

  • Wallbank, J. R. et al. Extra resistivity in graphene superlattices brought on by umklapp electron–electron scattering. Nat. Phys. 15, 32–36 (2019).

    CAS 

    Google Scholar
     

  • Wallbank, J. R., Patel, A. A., Mucha-Kruczyński, M., Geim, A. Ok. & Fal’ko, V. I. Generic miniband construction of graphene on a hexagonal substrate. Phys. Rev. B 87, 245408 (2013).


    Google Scholar
     

  • Wu, S. et al. A number of hot-carrier assortment in photo-excited graphene Moiré superlattices. Sci. Adv. 2, e1600002 (2016).


    Google Scholar
     

  • Moriya, R. et al. Emergence of orbital angular second at van Hove singularity in graphene/h-BN moiré superlattice. Nat. Commun. 11, 5380 (2020).

    CAS 

    Google Scholar
     

  • Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS 

    Google Scholar
     

  • Yang, W. et al. Epitaxial progress of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    CAS 

    Google Scholar
     

  • Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722 (2010).

    CAS 

    Google Scholar
     

  • Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Digital transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).


    Google Scholar
     

  • Duan, J. et al. Excessive thermoelectricpower consider graphene/hBN gadgets. Proc. Natl Acad. Sci. USA 113, 14272–14276 (2016).

    CAS 

    Google Scholar
     

  • Eckmann, A. et al. Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013).

    CAS 

    Google Scholar
     

  • Huang, M. et al. Large nonlinear Corridor impact in twisted WSe2. Preprint at arXiv:2006.05615 (2020).

  • Ortix, C., Yang, L. & van den Brink, J. Graphene on incommensurate substrates: trigonal warping and rising Dirac cone replicas with halved group velocity. Phys. Rev. B 86, 081405 (2012).


    Google Scholar
     

  • Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with strain. Nature 557, 404–408 (2018).

    CAS 

    Google Scholar
     

  • Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    CAS 

    Google Scholar
     

  • Battilomo, R., Scopigno, N. & Ortix, C. Berry curvature dipole in strained graphene: a Fermi floor warping impact. Phys. Rev. Lett. 123, 196403 (2019).

    CAS 

    Google Scholar
     

  • & Kumar, D. et al. Room-temperature nonlinear Corridor impact and wi-fi radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    CAS 

    Google Scholar
     

  • Finney, N. R. et al. Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 14, 1029–1034 (2019).

    CAS 

    Google Scholar
     

  • Zhang, C.-P. et al. Large nonlinear Corridor impact in strained twisted bilayer graphene. Preprint at arXiv:2010.08333 (2020).

  • Stauber, T., Peres, N. M. R. & Guinea, F. Digital transport in graphene: a semiclassical method together with midgap states. Phys. Rev. B 76, 205423 (2007).


    Google Scholar
     

  • Vasko, F. T. & Ryzhii, V. Voltage and temperature dependencies of conductivity in gated graphene. Phys. Rev. B 76, 233404 (2007).


    Google Scholar
     

  • Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering restricted service mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).


    Google Scholar
     

  • Ando, T. Valley Corridor conductivity in graphene: results of higher-order scattering. J. Phys. Soc. Jpn 87, 044702 (2018).


    Google Scholar
     

  • Novikov, D. S. Elastic scattering principle and transport in graphene. Phys. Rev. B 76, 245435 (2007).


    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments