Novoselov, Ok. S. et al. Electrical area impact in atomically skinny carbon movies. Science 306, 666–669 (2004).
Novoselov, Ok. S. et al. Two-dimensional gasoline of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental commentary of the quantum Corridor impact and Berry’s section in graphene. Nature 438, 201–204 (2005).
Shen, Y.-R. The Ideas of Nonlinear Optics (Wiley-Interscience, 1984).
Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).
Hunt, B. et al. Large Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).
Yankowitz, M. et al. Emergence of superlattice Dirac factors in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).
Ma, Q. et al. Remark of the nonlinear Corridor impact beneath time-reversal-symmetric situations. Nature 565, 337–342 (2019).
Kang, Ok., Li, T., Sohn, E., Shan, J. & Mak, Ok. F. Nonlinear anomalous Corridor impact in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).
Sodemann, I. & Fu, L. Quantum nonlinear Corridor impact induced by Berry curvature dipole in time-reversal invariant supplies. Phys. Rev. Lett. 115, 216806 (2015).
Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Dysfunction-induced nonlinear Corridor impact with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).
Isobe, H., Xu, S.-Y. & Fu, L. Excessive-frequency rectification through chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).
He, P. et al. Quantum frequency doubling within the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).
Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum supplies. Nat. Commun. 9, 3740 (2018).
Belinicher, V. I. & Sturman, B. I. The photogalvanic impact in media missing a middle of symmetry. Sov. Phys. Uspekhi 23, 199–223 (1980).
Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).
Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic second and topological transport. Phys. Rev. Lett. 99, 236809 (2007).
Track, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological Bloch bands in graphene superlattices. Proc. Natl Acad. Sci. USA 112, 10879–10883 (2015).
Stepanov, E. A. et al. Direct commentary of incommensurate–commensurate transition in graphene-hBN heterostructures through optical second harmonic era. ACS Appl. Mater. Interfaces 12, 27758–27764 (2020).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).
He, P. et al. Nonlinear planar Corridor impact. Phys. Rev. Lett. 123, 016801 (2019).
Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).
Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Corridor impact in moiré superlattices. Nature 497, 598–602 (2013).
DaSilva, A. M., Jung, J., Adam, S. & MacDonald, A. H. Transport and particle-hole asymmetry in graphene on boron nitride. Phys. Rev. B 91, 245422 (2015).
Wallbank, J. R. et al. Extra resistivity in graphene superlattices brought on by umklapp electron–electron scattering. Nat. Phys. 15, 32–36 (2019).
Wallbank, J. R., Patel, A. A., Mucha-Kruczyński, M., Geim, A. Ok. & Fal’ko, V. I. Generic miniband construction of graphene on a hexagonal substrate. Phys. Rev. B 87, 245408 (2013).
Wu, S. et al. A number of hot-carrier assortment in photo-excited graphene Moiré superlattices. Sci. Adv. 2, e1600002 (2016).
Moriya, R. et al. Emergence of orbital angular second at van Hove singularity in graphene/h-BN moiré superlattice. Nat. Commun. 11, 5380 (2020).
Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).
Yang, W. et al. Epitaxial progress of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722 (2010).
Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Digital transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).
Duan, J. et al. Excessive thermoelectricpower consider graphene/hBN gadgets. Proc. Natl Acad. Sci. USA 113, 14272–14276 (2016).
Eckmann, A. et al. Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013).
Huang, M. et al. Large nonlinear Corridor impact in twisted WSe2. Preprint at arXiv:2006.05615 (2020).
Ortix, C., Yang, L. & van den Brink, J. Graphene on incommensurate substrates: trigonal warping and rising Dirac cone replicas with halved group velocity. Phys. Rev. B 86, 081405 (2012).
Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with strain. Nature 557, 404–408 (2018).
Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).
Battilomo, R., Scopigno, N. & Ortix, C. Berry curvature dipole in strained graphene: a Fermi floor warping impact. Phys. Rev. Lett. 123, 196403 (2019).
& Kumar, D. et al. Room-temperature nonlinear Corridor impact and wi-fi radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).
Finney, N. R. et al. Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 14, 1029–1034 (2019).
Zhang, C.-P. et al. Large nonlinear Corridor impact in strained twisted bilayer graphene. Preprint at arXiv:2010.08333 (2020).
Stauber, T., Peres, N. M. R. & Guinea, F. Digital transport in graphene: a semiclassical method together with midgap states. Phys. Rev. B 76, 205423 (2007).
Vasko, F. T. & Ryzhii, V. Voltage and temperature dependencies of conductivity in gated graphene. Phys. Rev. B 76, 233404 (2007).
Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering restricted service mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).
Ando, T. Valley Corridor conductivity in graphene: results of higher-order scattering. J. Phys. Soc. Jpn 87, 044702 (2018).
Novikov, D. S. Elastic scattering principle and transport in graphene. Phys. Rev. B 76, 245435 (2007).