HomeNanotechnologyCarbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity technology...

Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity technology in residing photovoltaics


  • Liu, Z., Tabakman, S. M., Chen, Z. & Dai, H. Preparation of carbon nanotube bioconjugates for biomedical purposes. Nat. Protoc. 4, 1372–1381 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X. & Liu, Z. Carbon nanotubes in biology and drugs: an outline. Chin. Sci. Bull. 57, 167–180 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Gillen, A. J. et al. Templating colloidal sieves for tuning nanotube floor interactions and optical sensor responses. J. Colloid Interf. Sci. 565, 55–62 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Gillen, A. J. & Boghossian, A. A. Non-covalent strategies of engineering optical sensors based mostly on single-walled carbon nanotubes. Entrance Chem. 7, 612 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lambert, B., Gillen, A. J., Schuergers, N., Wu, S. J. & Boghossian, A. A. Directed evolution of the optoelectronic properties of artificial nanomaterials. Chem. Commun. 55, 3239–3242 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wu, S. J. et al. Restriction enzyme evaluation of double-stranded DNA on pristine single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 10, 37386–37395 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hashida, Y. et al. Photothermal ablation of tumor cells utilizing a single-walled carbon nanotube-peptide composite. J. Management. Launch 173, 58–66 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jena, P. V. et al. Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. Carbon 97, 99–109 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Boghossian, A. A. et al. Close to-infrared fluorescent sensors based mostly on single-walled carbon nanotubes for all times sciences purposes. ChemSusChem 4, 848–863 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Heller, D. A. et al. Multimodal optical sensing and analyte specificity utilizing single-walled carbon nanotubes. Nat. Nanotechnol. 4, 114–120 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Zubkovs, V., Schuergers, N., Lambert, B., Ahunbay, E. & Boghossian, A. A. Mediatorless, reversible optical nanosensor enabled by means of enzymatic pocket doping. Small 13, 1701654 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gillen, A. J., Kupis-Rozmyslowicz, J., Gigli, C., Schürgers, N. & Boghossian, A. A. Xeno nucleic acid nanosensors for enhanced stability towards ion-induced perturbations. J. Phys. Chem. Lett. 9, 4336–4343 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Bachilo, S. M. et al. Construction-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Close to-infrared optical sensors based mostly on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Holt, B. D., Dahl, Ok. N., Islam, M. F. & Al, H. E. T. Cells take up and get better from nanotubes with two distinct charges. ACS Nano 6, 3481–3490 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Boyer, P. et al. Delivering single-walled carbon nanotubes to the nucleus utilizing engineered nuclear protein domains. ACS Appl. Mater. Interfaces 8, 3524–3534 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Giraldo, J. P. et al. Plant nanobionics method to enhance photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Mouhib, M. et al. Enhancing bioelectricity technology in microbial gasoline cells and biophotovoltaics utilizing nanomaterials. Nano Res. https://doi.org/10.1007/s12274-019-2438-0 (2019).

  • Wong, M. H. et al. Lipid Alternate Envelope Penetration (LEEP) of nanoparticles for plant engineering: a common localization mechanism. Nano Lett. 16, 1161–1172 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Kwak, S.-Y. et al. Chloroplast-selective gene supply and expression in planta utilizing chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zubkovs, V. et al. Spinning-disc confocal microscopy within the second near-infrared window (NIR-II). Sci. Rep. 8, 13770 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kostarelos, Ok. et al. Mobile uptake of functionalized carbon nanotubes is impartial of practical group and cell kind. Nat. Nanotechnol. 2, 108–113 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Heller, D. A. et al. Concomitant size and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Rajan, A., Strano, M. S., Heller, D. A., Hertel, T. & Schulten, Ok. Size-dependent optical results in single walled carbon nanotubes. J. Phys. Chem. B 112, 6211–6213 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Barone, P. W., Parker, R. S. & Strano, M. S. In vivo fluorescence detection of glucose utilizing a single-walled carbon nanotube optical sensor: design, fluorophore properties, benefits, and downsides. Anal. Chem. 77, 7556–7562 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Robinson, S. J., Deroo, C. S. & Yocum, C. F. Photosynthetic electron switch in preparations of the cyanobacterium spirulina platensis. Plant Physiol. 70, 154–161 (1982).

    CAS 
    Article 

    Google Scholar
     

  • Gonzalez-Aravena, A. C., Yunus, Ok., Zhang, L., Norling, B. & Fisher, A. C. Tapping into cyanobacteria electron switch for greater exoelectrogenic exercise by imposing iron restricted progress. RSC Adv. 8, 20263–20274 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Orlanducci, S. et al. Mapping single walled carbon nanotubes in photosynthetic algae by single-cell confocal Raman microscopy. Supplies 13, 5121 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Gierlinger, N., Keplinger, T. & Harrington, M. Imaging of plant cell partitions by confocal Raman microscopy. Nat. Protoc. 7, 1694–1708 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Neves, V. et al. Uptake and launch of double-walled carbon nanotubes by mammalian cells. Adv. Funct. Mater. 20, 3272–3279 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Xie, L. et al. Single-walled carbon nanotubes probing the denaturation of lysozyme. J. Phys. Chem. C 114, 7717–7720 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Holt, B. D., Dahl, Ok. N. & Islam, M. F. Quantification of uptake and localization of bovine serum albumin-stabilized single-wall carbon nanotubes in numerous human cell sorts. Small 7, 2348–2355 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Nepal, D. & Geckeler, Ok. E. Proteins and carbon nanotubes: shut encounter in water. Small 3, 1259–1265 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Jacobson, Ok. H. et al. Lipopolysaccharide density and construction govern the extent and distance of nanoparticle interplay with precise and mannequin bacterial outer membranes. Environ. Sci. Technol. 49, 10642–10650 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Schuergers, N. & Wilde, A. Appendages of the cyanobacterial cell. Life 5, 700–715 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Dienst, D. et al. The cyanobacterial homologue of the RNA Chaperone Hfq is important for motility of Synechocystis sp. PCC 6803. Microbiology 154, 3134–3143 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Duggan, P. S., Gottardello, P. & Adams, D. G. Molecular evaluation of genes in Nostoc punctiforme concerned in pilus biogenesis and plant an infection. J. Bacteriol. 189, 4547–4551 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Herrero, A., Stavans, J. & Flores, E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol. Rev. 40, 831–854 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Pantarotto, D., Briand, J.-P., Prato, M. & Bianco, A. Translocation of bioactive peptides throughout cell membranes by carbon nanotubes. Chem. Commun. 1, 16–17 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Kraszewski, S., Bianco, A., Tarek, M. & Ramseyer, C. Insertion of brief amino-functionalized single-walled carbon nanotubes into phospholipid bilayer happens by passive diffusion. PLoS ONE 7, e40703 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Mu, Q., Broughton, D. L. & Yan, B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: growing a mannequin for cell uptake. Nano Lett. https://doi.org/10.1021/nl902647x (2009).

  • Lacerda, L. et al. How do functionalized carbon nanotubes land on, bind to and pierce by means of mannequin and plasma membranes. Nanoscale 5, 10242–10250 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Demirer, G. S. et al. Excessive facet ratio nanomaterials allow supply of practical genetic materials with out DNA integration in mature vegetation. Nat. Nanotechnol. 14, 456–464 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Costa, P. M., Bourgognon, M., Wang, J. T. W. & Al-Jamal, Ok. T. Functionalized carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic mind supply. J. Management. Launch 241, 200–219 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Kowata, H., Tochigi, S., Takahashi, H. & Kojima, S. Outer membrane permeability of cyanobacterium Synechocystis sp. pressure PCC 6803: research of passive diffusion of small natural vitamins reveal the absence of classical porins and intrinsically low permeability. J. Bacteriol. 199, e00371-17 (2017).

    Article 

    Google Scholar
     

  • Gao, Y. et al. Predictive fashions of diffusive nanoparticle transport in three-d tumor cell spheroids. AAPS J. 15, 816–831 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Allen, B. L. et al. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 17194–17205 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Kotchey, G. P., Zhao, Y., Kagan, V. E. & Star, A. Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Adv. Drug Deliv. Rev. 65, 1921–1932 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Ignatova, T., Chandrasekar, S., Pirbhai, M., Jedlicka, S. S. & Rotkin, S. V. Micro-Raman spectroscopy as an enabling instrument for long-term intracellular research of nanomaterials at nanomolar focus ranges. J. Mater. Chem. B 5, 6536–6545 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Pan, J., Li, F. & Choi, J. H. Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. J. Mater. Chem. B 5, 6511–6652 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Galassi, T. V. et al. Lengthy-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS ONE 15, e0226791 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Pirbhai, M. et al. Augmentation of C17. 2 neural stem cell differentiation by way of uptake of low concentrations of ssDNA‐wrapped single‐walled carbon nanotubes. Adv. Biosyst. 3, 1800321 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Reggente, M., Politi, S., Antonucci, A., Tamburri, E. & Boghossian, A. A. Design of optimized PEDOT-based electrodes for enhancing efficiency of residing photovoltaics based mostly on phototropic micro organism. Adv. Mater. Technol. 5, 1900931 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bombelli, P. et al. Quantitative evaluation of the components limiting solar energy transduction by Synechocystis sp. PCC 6803 in organic photovoltaic gadgets. Vitality Environ. Sci. 4, 4690–4698 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, pressure histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).


    Google Scholar
     

  • Schuergers, N., Nürnberg, D. J., Wallner, T., Mullineaux, C. W., & Wilde, A. PilB localization correlates with the route of twitching motility within the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 161, 960–966 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Gao, Z. et al. Optical detection of particular person ultra-short carbon nanotubes allows their size characterization right down to 10 Nm. Sci. Rep. 5, 17093 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Nečas, D. & Klapetek, P. Gwyddion: an open-source software program for SPM information evaluation. Open Physics 10, 181–188 (2012).

    Article 

    Google Scholar
     

  • Jin, H., Heller, D. A., Sharma, R. & Strano, M. S. Dimension-dependent mobile uptake and expulsion of single-walled carbon nanotubes: single particle monitoring and a generic uptake mannequin for nanoparticles. ACS Nano 3, 149–158 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Ritchie, R. J. Constant units of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Currie, J. & Wilson, D. I. OPTI: Reducing the barrier between open supply optimizers and the economic MATLAB consumer. In Proc. Foundations of Laptop-Aided Course of Operations (Omnipress, 2012); http://focapo.cheme.cmu.edu/2012/proceedings/information/begin.htm

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments