HomeNanotechnologyA novel small diameter nanotextile arterial graft is related to surgical feasibility...

A novel small diameter nanotextile arterial graft is related to surgical feasibility and security and elevated transmural endothelial ingrowth in pig | Journal of Nanobiotechnology


  • Tomizawa Y. Vascular prostheses for aortocoronary bypass grafting: a evaluation. Artif Organs. 1995;19:39–45. https://doi.org/10.1111/j.1525-1594.1995.tb02242.x.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Slovut DP, Lipsitz EC. Surgical approach and peripheral artery illness. Circulation. 2012;126:1127–38. https://doi.org/10.1161/CIRCULATIONAHA.111.059048.

    Article 
    PubMed 

    Google Scholar
     

  • Seifu DG, Purnama A, Mequanint Ok, Mantovani D. Small-diameter vascular tissue engineering. Nat Rev Cardiol. 2013;10:410–21. https://doi.org/10.1038/nrcardio.2013.77.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Klinkert P, Put up PN, Breslau PJ, van Bockel JH. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A evaluation of the literature. Eur J Vasc Endovasc Surg. 2004;27:357–62. https://doi.org/10.1016/j.ejvs.2003.12.027.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rothuizen TC, Damanik FFR, Lavrijsen T, Visser MJT, Hamming JF, Lalai RA, Duijs JMGJ, van Zonneveld AJ, Hoefer IE, van Blitterswijk CA, Rabelink TJ, Moroni L, Rotmans JI. Growth and analysis of in vivo tissue engineered blood vessels in a porcine mannequin. Biomaterials. 2016;75:82–90. https://doi.org/10.1016/j.biomaterials.2015.10.023.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Roy-Chaudhury P, El-Khatib M, Campos-Naciff B, Wadehra D, Ramani Ok, Leesar M, Mistry M, Wang Y, Chan JS, Lee T, Munda R. Again to the longer term: how biology and expertise may change the function of ptfe grafts in vascular entry administration. Semin Dial. 2012;25:495–504. https://doi.org/10.1111/j.1525-139X.2012.01091.x.

    Article 
    PubMed 

    Google Scholar
     

  • Gibson KD, Gillen DL, Caps MT, Kohler TR, Sherrard DJ, Stehman-Breen CO. Vascular entry survival and incidence of revisions: a comparability of prosthetic grafts, easy autogenous fistulas, and venous transposition fistulas from the US renal knowledge system dialysis morbidity and mortality examine. J Vasc Surg. 2001;34:694–700. https://doi.org/10.1067/mva.2001.117890.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Parang P, Arora R. Coronary vein graft illness: pathogenesis and prevention. Can J Cardiol. 2009. https://doi.org/10.1016/S0828-282X(09)70486-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burger DHC, Kappetein AP, Van Bockel JH, Breslau PJ. A potential randomized trial evaluating vein with polytetrafluoroethylene in above-knee femoropopliteal bypass grafting. J Vasc Surg. 2000;32:278–83. https://doi.org/10.1067/mva.2000.106496.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Veith FJ, Gupta SK, Ascer E, White-Flores S, Samson RH, Scher LA, Towne JB, Bernhard VM, Bonier P, Flinn WR, Astelford P, Yao JST, Bergan JJ. Six-year potential multicenter randomized comparability of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg. 1986;3:104–14. https://doi.org/10.1016/0741-5214(86)90073-X.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yashar JJ, Thompson R, Burnard RJ, Weyman AK, Yashar J, Hopkins RW. Dacron vs vein for femoropopliteal arterial bypass: ought to the saphenous vein be spared? Arch Surg. 1981;116:1037–40. https://doi.org/10.1001/archsurg.1981.01380200045009.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ravari H, Kazemzade GH, Modaghegh MHS, Khashayar P. Patency price and problems of polytetrafluoroethylene grafts in contrast with polyurethane grafts for hemodialysis entry. Ups J Med Sci. 2010;115:245–8. https://doi.org/10.3109/03009731003678562.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai M, Seifalian AM, Hamilton G. Function of prosthetic conduits in coronary artery bypass grafting. Eur J Cardiothoracic Surg. 2011;40:394–8. https://doi.org/10.1016/j.ejcts.2010.11.050.

    Article 

    Google Scholar
     

  • Lemson MS, Tordoir JH, Daemen MJ, Kitslaar PJ. Intimal hyperplasia in vascular grafts. Eur J Vasc Endovasc Surg. 2000;19:336–50. https://doi.org/10.1053/ejvs.1999.1040.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hiob MA, She S, Muiznieks LD, Weiss AS. Biomaterials and modifications within the growth of small-diameter vascular grafts. ACS Biomater Sci Eng. 2017;3:712–23. https://doi.org/10.1021/acsbiomaterials.6b00220.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xue L, Greisler HP. Biomaterials within the growth and way forward for vascular grafts. J Vasc Surg. 2003;37:472–80. https://doi.org/10.1067/mva.2003.88.

    Article 
    PubMed 

    Google Scholar
     

  • Joseph J, Nair SV, Menon D. Integrating substrateless electrospinning with textile expertise for creating biodegradable three-dimensional buildings. Nano Lett. 2015;15:5420–6. https://doi.org/10.1021/acs.nanolett.5b01815.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Joseph J, Krishnan AG, Cherian AM, Rajagopalan B, Jose R, Varma P, Maniyal V, Balakrishnan S, Nair SV, Menon D. Reworking nanofibers into woven nanotextiles for vascular software. ACS Appl Mater Interfaces. 2018;10:19449–58. https://doi.org/10.1021/acsami.8b05096.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yates SG, Barros D’Sa AB, Berger Ok, Fernandez LG, Wooden SJ, Rittenhouse EA, Davis CC, Mansfield PB, Sauvage LR. The preclotting of porous arterial prostheses. Ann Surg. 1978;188:611–22. https://doi.org/10.1097/00000658-197811000-00005.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sulaiman NS, Bond AR, Bruno VD, Joseph J, Johnson JL, Suleiman MS, George SJ, Ascione R. Efficient decellularisation of human saphenous veins for biocompatible arterial tissue engineering purposes: bench optimisation and feasibility in vivo testing. J Tiss Eng. 2021. https://doi.org/10.1177/2041731420987529.

    Article 

    Google Scholar
     

  • Dekker A, Reitsma Ok, Beugeling T, Bantjes A, Feijen J, van Aken WG. Adhesion of endothelial cells and adsorption of serum proteins on fuel plasma-treated polytetrafluoroethylene. Biomaterials. 1991;12:130–8. https://doi.org/10.1016/0142-9612(91)90191-C.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sarkar S, Gross sales KM, Hamilton G, Seifalian AM. Addressing thrombogenicity in vascular graft development. J Biomed Mater Res Half B Appl Biomater. 2007;82:100–8. https://doi.org/10.1002/jbm.b.30710.

    Article 
    CAS 

    Google Scholar
     

  • Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Floor engineering of electrospun polyethylene terephthalate (PET) nanofibers in the direction of growth of a brand new materials for blood vessel engineering. Biomaterials. 2005;26:2527–36. https://doi.org/10.1016/j.biomaterials.2004.07.026.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Philpott DE, Kato Ok. Mucopolysaccharide vascular coating relationship to environmental elements. In: Swenberg CE, Horneck G, Stassinopoulos EG, editors. Organic results and physics of photo voltaic and galactic cosmic radiation. Boston: Springer; 1993. p. 217–26. https://doi.org/10.1007/978-1-4615-2918-7_21.

    Chapter 

    Google Scholar
     

  • Melchiorri AJ, Hibino N, Fisher JP. Methods and methods to reinforce the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts. Tissue Eng Half B Rev. 2013;19:292–307. https://doi.org/10.1089/ten.teb.2012.0577.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pektok E, Nottelet B, Tille JC, Gurny R, Kalangos A, Moeller M, Walpoth BH. Degradation and therapeutic traits of small-diameter poly(ε-caprolactone) vascular grafts within the rat systemic arterial circulation. Circulation. 2008;118:2563–70. https://doi.org/10.1161/CIRCULATIONAHA.108.795732.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10:11–25. https://doi.org/10.1016/j.actbio.2013.08.022.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cleary MA, Geiger E, Grady C, Finest C, Naito Y, Breuer C. Vascular tissue engineering: the following era. Traits Mol Med. 2012;18:394–404. https://doi.org/10.1016/j.molmed.2012.04.013.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats by way of electrospinning. Polymer (Guildf). 2003;44:1287–94. https://doi.org/10.1016/S0032-3861(02)00820-0.

    Article 
    CAS 

    Google Scholar
     

  • DIN EN ISO 7198, Cardiovascular implants and extracorporeal programs–Vascular Prostheses–Tubular vascular grafts and vascular patches, ISO 7198. 24 (2014).

  • Stacy MR, Naito Y, Maxfield MW, Kurobe H, Tara S, Chan C, Rocco KA, Shinoka T, Sinusas AJ, Breuer CK. Focused imaging of matrix metalloproteinase exercise within the analysis of reworking tissue-engineered vascular grafts implanted in a rising lamb mannequin. J Thorac Cardiovasc Surg. 2014;148:2227–33. https://doi.org/10.1016/j.jtcvs.2014.05.037.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mine Y, Mitsui H, Oshima Y, Noishiki Y, Nakai M, Sano S. Suture retention power of expanded polytetrafluoroethylene (ePTFE) graft. Acta Med Okayama. 2010;64:121–8. https://doi.org/10.18926/AMO/32846.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Meng X, Wang X, Jiang Y, Zhang B, Li Ok, Li Q. Suture retention power of P(LLA-CL) tissue-engineered vascular grafts. RSC Adv. 2019;9:21258–64. https://doi.org/10.1039/C9RA04529E.

    Article 
    CAS 

    Google Scholar
     

  • Begovac PC, Thomson RC, Fisher JL, Hughson A, Gällhagen A. Enhancements in GORE-TEX® vascular graft efficiency by Carmeda® BioActive Floor heparin immobilization. Eur J Vasc Endovasc Surg. 2003;25:432–7. https://doi.org/10.1053/ejvs.2002.1909.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ojha M, Cobbold RSC, Johnston KW. Affect of angle on wall shear stress distribution for an end-to-side anastomosis. J Vasc Surg. 1994;19:1067–73. https://doi.org/10.1016/S0741-5214(94)70219-5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Clowes AW, Robe AM, Hanson SR, Reidy MA. Mechanisms of arterial graft failure. 1. Function of mobile proliferation in early therapeutic of PTFE prostheses. Am J Pathol. 1985;118;43–54.

  • Mrówczyński W, Mugnai D, De Valence S, Tille JC, Khabiri E, Cikirikcioglu M, Möller M, Walpoth BH. Porcine carotid artery substitute with biodegradable electrospun poly-e-caprolactone vascular prosthesis. J Vasc Surg. 2014;59:210–9. https://doi.org/10.1016/j.jvs.2013.03.004.

    Article 
    PubMed 

    Google Scholar
     

  • Rotmans JI, Velema E, Verhagen HJM, Blankensteijn JD, Kastelein JJP, De Kleijn DPV, Yo M, Pasterkamp G, Stroes ESG. Fast, arteriovenous graft failure because of intimal hyperplasia: a porcine, bilateral, carotid arteriovenous graft mannequin. J Surg Res. 2003;113:161–71. https://doi.org/10.1016/S0022-4804(03)00228-2.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pennel T, Bezuidenhout D, Koehne J, Davies NH, Zilla P. Transmural capillary ingrowth is crucial for confluent vascular graft therapeutic. Acta Biomater. 2018;65:237–47. https://doi.org/10.1016/j.actbio.2017.10.038.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Clowes AW, Kirkman TR, Reidy MA. Mechanisms of arterial graft therapeutic. Fast transmural capillary ingrowth offers a supply of intimal endothelium and easy muscle in porous PTFE prostheses. Am J Pathol. 1986;123:220–30.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ceccarelli J, Putnam AJ. Sculpting the clean slate: How fibrin’s assist of vascularization can encourage biomaterial design. Acta Biomater. 2014;10:1515–23. https://doi.org/10.1016/j.actbio.2013.07.043.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Contreras MA, Quist WC, LoGerfo FW. Impact of porosity on small-diameter vascular graft therapeutic. Microsurgery. 2000;20:15–21. https://doi.org/10.1002/(SICI)1098-2752(2000)20:1percent3c15::AID-MICR3percent3e3.0.CO;2-P.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, Jeong IS. Concerns within the growth of small-diameter vascular graft instead for bypass and reconstructive surgical procedures: a evaluation. Cardiovasc Eng Technol. 2020. https://doi.org/10.1007/s13239-020-00482-y.

    Article 
    PubMed 

    Google Scholar
     

  • Graham LM, Burkel WE, Ford JW, Vinter DW, Kahn RH, Stanley JC. Speedy seeding of enzymatically derived endothelium in dacron vascular grafts: early experimental research with autologous canine cells. Arch Surg. 1980;115:1289–94. https://doi.org/10.1001/archsurg.1980.01380110033005.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Boccafoschi F, Habermehl J, Vesentini S, Mantovani D. Organic performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials. 2005;26:7410–7. https://doi.org/10.1016/j.biomaterials.2005.05.052.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Patel A, Tremendous B, Sandig M, Mequanint Ok. Elastin biosynthesis: the lacking hyperlink in tissue-engineered blood vessels. Cardiovasc Res. 2006;71:40–9. https://doi.org/10.1016/j.cardiores.2006.02.021.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Berglund JD, Nerem RM, Sambanis A. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng. 2004;10:1526–35. https://doi.org/10.1089/ten.2004.10.1526.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stegemann JP, Kaszuba SN, Rowe SL. Evaluate: advances in vascular tissue engineering utilizing protein-based biomaterials. Tissue Eng. 2007;13:2601–13. https://doi.org/10.1089/ten.2007.0196.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments